x_{11} & x_{12} & \cdots & x_{1d} & 1 \\
x_{21} & x_{22} & \cdots & x_{2d} & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
x_{m1} & x_{m2} & \cdots & x_{md} & 1
\end{matrix}
\right)
=
\left(
\begin{matrix}
{x}_{1}^{\rm{T}} & 1 \\
{x}_{2}^{\rm{T}} & 1 \\
\vdots & \vdots \\
{x}_{m}^{\rm{T}} & 1 \\
\end{matrix}
\right)
复造代码
结果以下:
\mathbf{X}=\left( \begin{matrix} x_{11} & x_{12} & \cdots & x_{1d} & 1 \\ x_{21} & x_{22} & \cdots & x_{2d} & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ x_{m1} & x_{m2} & \cdots & x_{md} & 1 \end{matrix} \right) = \left( \begin{matrix} {x}_{1}^{\rm{T}} & 1 \\ {x}_{2}^{\rm{T}} & 1 \\ \vdots & \vdots \\ {x}_{m}^{\rm{T}} & 1 \\ \end{matrix} \right) 公式编纂器中勾选 “止间公式”,结果以下: \mathbf{X}=\left( \begin{matrix} x_{11} & x_{12} & \cdots & x_{1d} & 1 \\ x_{21} & x_{22} & \cdots & x_{2d} & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ x_{m1} & x_{m2} & \cdots & x_{md} & 1 \end{matrix} \right) = \left( \begin{matrix} {x}_{1}^{\rm{T}} & 1 \\ {x}_{2}^{\rm{T}} & 1 \\ \vdots & \vdots \\ {x}_{m}^{\rm{T}} & 1 \\ \end{matrix} \right) \\ 戴指定编号的止间公式,代码以下:
\begin{equation}\tag{2}
\mathbf{X}=\left(
\begin{matrix}
x_{11} & x_{12} & \cdots & x_{1d} & 1 \\
x_{21} & x_{22} & \cdots & x_{2d} & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
x_{m1} & x_{m2} & \cdots & x_{md} & 1
\end{matrix}
\right)
=
\left(
\begin{matrix}
{x}_{1}^{\rm{T}} & 1 \\
{x}_{2}^{\rm{T}} & 1 \\
\vdots & \vdots \\
{x}_{m}^{\rm{T}} & 1 \\
\end{matrix}
\right)
\end{equation}
复造代码
结果以下: \begin{equation}\tag{2} \mathbf{X}=\left( \begin{matrix} x_{11} & x_{12} & \cdots & x_{1d} & 1 \\ x_{21} & x_{22} & \cdots & x_{2d} & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ x_{m1} & x_{m2} & \cdots & x_{md} & 1 \end{matrix} \right) = \left( \begin{matrix} {x}_{1}^{\rm{T}} & 1 \\ {x}_{2}^{\rm{T}} & 1 \\ \vdots & \vdots \\ {x}_{m}^{\rm{T}} & 1 \\ \end{matrix} \right) \end{equation} 本文链交: